지금까지 공부해 온 소프트웨어 영역의 기술들을 트리 형식으로 정리해 본 것이다.


소프트웨어 기술은 그 발전 속도가 너무 빠르다. 그리고 새로운 기술은 매일 매일 쏟아져 나온다. 이런 상황에서 이제 소프트웨어를 접한지 얼마 되지 않은 사람들은 어떤 것을 먼저 공부해야 할 지 갈피를 잡기 힘들 것이다. 개인적으로 이제껏 소프트웨어를 공부해 오면서 안타까웠던 점을 꼽자면 이런 급변하는 상황에서도 기술들 간에 어느 정도 줄기가 있다는 것, 그리고 줄기가 되는 기술들 간에 선후 관계가 있다는 것을 처음부터 알지 못했다는 것이다. 그런 관계를 알게 된 것은 이제 소프트웨어의 근간이 되는 기술들을 대부분 알게 된 이후였다. 개인적인 능력의 문제도 있겠지만 이 점을 미리 알았다면 그것들을 모두 익히는데 이렇게 오랜 시간이 걸리지는 않았을 것이다. 

그런 안타까움이 뭍어 있는 것이 바로 이 기술 트리다. 만약 이제 소프트웨어를 막 공부하기 시작한 사람이라면 이 트리에 맞춰 공부하기를 추천한다. 그리고 다른 수많은 기술들이 있지만 적어도 이 영역 내의 기술들은 소프트웨어를 하는 사람들이라면 거의 필수적인 기술들이라고 봐야 한다.

일부 개발 영역에 따라서는 더 중요한 것이 빠져 있을 수도 있다. 개발자라고 해서 모두 같은 영역에서 일하는 것이 아니기 때문이다. 웹 프론트, 백엔드, 임베디드, 데이터베이스 영역에서는 세부적으로 보다 더 중요한 기술도 있을 수 있다. 그래도 역시 위의 기술들이 뼈대를 이루는 것들이다. 그리고 그 중에서도 가장 중요하다고 생각되는 기술들은 볼륨 처리를 해 두었다. 저 중에서 볼륨 처리된 기술에 대해서 간략히 이야기해 볼까 한다.


객체지향(OOP, Object Oriented Programming)

현대 소프트웨어 개발에 있어서 가장 중요한 되는 개념이라고 생각하면 된다. 스크립트 언어나 함수형 언어를 접하게 되더라도, 그리고 구조적 언어를 통해 개발을 하게 되더라도 객체지향은 꼭 알고 지나가야 하는 개념이다. 트리에서도 보듯이 프로그래밍 언어의 기초 문법을 익히고 나서 소프트웨어를 구조적으로 작성하기 위해 배우는 첫번째 단계이며 이후 필요한 소프트웨어 기술들의 모태가 되는 기술이다. 즉, 객체지향을 모르고는 어떤 소프트웨어적인 개념도 제대로 이해하기 힘들고, 객체지향을 모르는 사람을 소프트웨어 개발자라고 말하기 어렵다.

불완전성의 관리 관점에서 보면 객체지향은 갈수록 대형화 되어 가는 소프트웨어를 작은 단위로 축소시켜 주는 역할을 한다. 하위 타입에 대한 은폐를 통해서 작성해야 할 코드의 양을 줄이면서도 수정 및 확장이 용이한 소프트웨어 구조를 만들어 준다. 상속을 통해서는 중복된 코드가 발생하는 것을 막아주고, 인터페이스와 타입의 개념을 통해서는 내부 구현에 대한 은폐를 가능하게 해준다. 변수 대신 객체를 바꿈으로써 조건문/제어문을 사용하는 대신 직접 행위를 변경할 수 있게 한다.

객체지향이 소프트웨어 영역에 가져온 영향력은 막대하다. 사실상 소프트웨어에 설계의 개념이 도입된 것이나 설계의 원칙이 도입되게 된 것, 올바르고 좋은 설계의 패턴, 소프트웨어의 가시화(UML) 등 거의 모든 소프트웨어 기술은 객체지향을 이용하거나 객체지향에서 파생된 것, 또는 객체지향을 개선한 것들이다. 현대의 대부분의 언어들은 객체지향을 온전히, 혹은 적어도 부분적으로 지원한다.


UML(Unified Modeling Language)

UML이 있기 전까지 소프트웨어는 비 가시적인 기술 영역이었다. 인간이 눈으로 얼마나 많은 양의 정보를 얻는지를 안다면 이것은 치명적인 문제였다. UML이 없었던 시절, 소프트웨어를 여럿이서 함께 개발한다는 것이 무척 어려웠을 것이다. 인간의 언어는 코드보다 부정확하다. 코드는 완벽하게 진실만을 이야기 하지만 구조를 이해하지 못한 상태에서의 코드는 줄거리를 모르는 대서사시처럼 장황하다. 인간의 언어로 대화하다가 서로 막히는 곳이 있으면 그 대서사시를 살펴봐야 한다. 이 와중에 일부 개발자들은 자신의 코드를 신성시 한다. 아마도 UML이 없던 시절에 소프트웨어를 바라보는 다른 엔지니어들의 시선은 그리 좋지 못했을 것이다. 소프트웨어 개발자 간에도 의사 소통이 신통치 않았을텐데 다른 분야의 사람들과 원활히 대화하기는 더욱 어려웠을 것이다.

사람들이 소프트웨어를 (자기 나름대로의 방법으로) 가시화 하기 시작했을 때에도 그 가시적인 도안들을 통한 커뮤니케이션이 원활하지 않았다. 작은 그룹에서는 통용될지 몰라도 의사소통의 단위가 커지면 가시화의 방식이 달라 서로 이해하기 어려웠다. 

UML은 이런 가시적인 툴로서는 최초로 보편적인 표시 언어로 사용된 것이다. 개발자들은 UML을 통해 비로소 서로의 코드를 보지 않아도 소프트웨어의 구조를 이해하게 되었고, 코드를 먼저 만들지 않고도 구현을 이야기 할 수 있게 되었다. 

아직까지는 코드와 유사한 수준의 소프트웨어 이해를 가능하게 하는 언어는 UML이 유일하다. 


디자인 패턴

디자인 패턴이 탄생한 후부터 개발자들은 좋은 설계를 인간의 언어로 말할 수 있게 되었다고 할 수 있다. 아기로 비유하자면 이제 막 첫 마디 단어를 말하는 그 시점만큼 극적인 일이다. 디자인 패턴이 있기 전에는 어떤 설계가 다른 설계보다 어떻게 나은지를 설명하기 위해 코드를 작성하거나 UML을 그리거나 자신이 하려고 하는 일에 대해서 상대방에게 인간의 언어로 수 십 분에 걸쳐 이야기 해야 했다. 디자인 패턴이라는 것이 개발자들이 설계 문제를 해결하던 여러 방법들에 이름을 붙여 놓은 것이기 때문에, 설계에 대해 한참 이야기를 하다 보면 서로 같은 이야기를 하고 있었다는 것을 알게 되었을 것이다. 디자인 패턴은 이런 "같은 이야기"들에 이름을 붙였다. 그 이후부터는 같은 이야기를 지루하게 반복하는 일이 없어졌다.

사람들이 잘 된 설계에 대해 이름을 붙이기 시작하면서 대화는 짧아지고 정밀한 설계에 대해 집중할 수 있게 되었다. 그러면서 다른 디자인 패턴들도 많이 생겨나게 되었고, 대화는 더욱 풍성해졌다. 같은 설계 문제에 대해 어떤 패턴을 적용하는 것이 더 나은 설계인지를 이야기할 수 있게 되었다. 

디자인 패턴을 모르고는 설계를 이야기 할 수 없다.


Unit Test(단위 테스트)

단위 테스트는 소프트웨어의 안전망이다.

단위 테스트 이전의 소프트웨어는 주로 정밀한 설계를 통한 구현 상에서의 오류 감소, 그리고 통합 테스트를 통한 디버깅이 불안전성 제거를 위한 거의 유일한 방법이었다. 이 방법을 제외하고는 인간의 두뇌가 유일한 불안정성 관리 도구였다. 불안전성의 원리 때문에 직접적으로 소프트웨어의 완전성을 증명할 수 없지만 유닛 테스트는 간접적인 방법으로 안전망을 구축해준다.

유닛 테스트의 유용성을 이야기 해보면 다음과 같다. 

우선 직접 작성하지 않은 소스에 유닛 테스트가 있을 경우, 소스의 의도를 파악하는데 도움이 된다. 필요한 경우에는 리팩토링을 통해서 소스를 더욱 잘 이해할 수도 있고, 설계를 바꿈으로써 소스의 흐름을 더 원활하게 가져갈 수도 있다. 

유닛 테스트는 구현에서 발생한 버그를 테스트 단계에서 발견하게 됨으로써 생기는 디버깅의 어려움을 감소시켜 준다. 버그는 발생한 시점에 발견하여 즉각 수정하는 것이 손쉬운데 이는 버그가 발생한 시점이 코딩 시점과 가까울수록 해당 버그의 문제점을 짚어 내기가 용이하기 때문이다.(사실 이 부분은 불완전성 관리의 도구가 오직 두뇌임을 명시적으로 보여주는 대목이다) 그런데 프로젝트가 커지면 커질수록 전통적인 개발 프로세스에서는 구현과 테스트 간의 간격이 더 벌어졌다. 대형 프로젝트일수록 더 정밀한 관리가 필요하고 더 나은 방식으로 문제점을 해결해야 함에도 전통적인 프로세스는 이 문제를 더 키우기만 할 뿐이었다. 유닛테스트가 생겨남으로써 일시적인 버그는 즉시 판단하고 제거할 수 있게 되었다.

유닛 테스트의 또 다른 이점은 설계에 준하는 수준의 소프트웨어 동작 지침을 제공한다는 것이다. 이는 TDD(Test Driven Development)가 추구하는 방향인데, 테스트 코드를 구현 코드보다 먼저 작성함으로써 구현 코드가 작성되어야 할 방향을 정해주는 것이다. 이로써 설계 단계에서 미비했거나 요구사항의 불확실성 때문에 완벽하지 못했던 설계를 유닛 테스트를 통해 보충해 줄 수 있다.


리팩토링

현대의 소프트웨어는 늘 수정된다는 특성이 있다. 그래서 요즘에는 완벽한 설계보다는 실행 가능하고 수정 가능한 설계를 추구하는 경향이 있다. 이에 따라 별다른 수정 사항이 없어도 구현 중에 일부 설계가 부적절한 것을 발견하게 되는 경우도 있고, 초기에는 잘 된 설계임에도 불구하고 기능적인 수정이 늘어나면서 설계의 효율이 떨어지는 경우도 있다. 이렇게 효율이 떨어진 설계를 널리 잘 알려진 좋은 설계, 즉 디자인 패턴을 중심으로 좋은 설계로 바꾸어 나가는 작업을 리팩토링이라고 한다.

이 과정은 근본적으로는 설계의 변경이지만, 이미 만들어진 기능에 대해 수행하는 작업이므로 실질적으로는 잘 동작하고 있는 코드를 수정하여 설계 맞추는 작업이라고 할 수 있다. 이 과정에서는 잘 동작하는 코드가 수정 중에 버그가 발생하지 않도록 안전장치를 해 둘 필요가 있다. 이 역할을 하는 것이 유닛 테스트이다. 리팩토링 과정은 어떤 경우에는 별다른 어려움 없이 끝날 수도 있지만 어떤 경우에는 상당한 시간 동안 진행 될 때도 있다. 이 때 리팩토링의 각 단계에서 기존 기능과 동일하게 동작함을 확인시켜주는 유닛 테스트는 필수적이다.

리팩토링은 디자인 패턴이 나온 이후에 생겨난 것이고, 유닛 테스트를 통해서 그 안정성을 보장 받게 되었다고 볼 수 있다. 또한 구현 이후에 설계를 변경한다는 점에서 정통의 소프트웨어 개발 프로세스와는 상반된 개념이기도 하다. 소프트웨어 분야는 아직도 한창 발전하고 있는 분야이기 때문에 혁신적인 사고가 언제든 기존의 사고를 제치고 자리 잡을 수 있다. 설계를 반영하여 코드를 작성하고, 이미 작성된 코드를 수정하고, 수정된 코드에 맞춰 설계를 변경하는 일련의 과정은 소프트웨어가 가진 유연성이라는 장점을 가장 잘 드러내는 과정이라고 볼 수 있다. 리팩토링은 개발자가 설계와 코드 안에서 자유로워 질 수 있음을 보여주는 기술이라 할 수 있다.


Agile

Agile은 전통적인 소프트웨어 개발 방법론의 단점을 보완하기 위해 생겨난 개발 방법론이다. 전통적인 개발 방법론은 철저한 요구사항 수집 및 분석, 이를 바탕으로 한 세밀한 설계, 설계에 딱 맞는 구현, 설계-구현에서의 부족한 점을 테스트를 통해 보완하는 구조로 되어 있다. 이는 개발 방법론이 정립되지 않았던 시기 보다는 나은 결과물을 내줄 수는 있었지만 현대의 소프트웨어 분야의 트렌드와는 잘 맞지 않는다. 현대에는 개발 시작 시점에 요구사항이 완벽한 경우가 별로 없고(거의 없다), 시장의 요구 변화에 맞춰 개발 진행 중에 상당 부분 변경이 이루어진다. 개발 중간에 수많은 요구사항들이 새로 생겨나고 없어지거나 수정된다. 또한 개발이 완료되었다고 해도 지속적인 수정 요청이 발생하기도 한다. 이러한 요구사항 변화를 기존 프로세스 상에 반영하는 것은 거의 불가능에 가깝다.

Agile은 현대 소프트웨어 개발 과정의 특성을 반영하고자 하는 프로세스이다. 시장은 항상 변하고, 이에 따라 요구사항은 항상 변한다. 시간이 지날수록 사용자의 요구사항은 더 많아지게 된다. Agile에서는 이러한 요구사항을 수용하기 위해서 요구사항들을 중요도, 개발 기간, 구체화 정도 등의 요소를 통해 순위를 매기고 이들 중 일부를 가지고 개발에 착수한다. 따라서 전체 요구사항을 모두 수집하는 방식에 비해 요구사항 분석이 짧다. 또한 요구사항의 개수가 적으므로 각 단계별 수행 시간도 짧아지게 된다. 이를 통해 프로세스의 기간을 단축시킬 수 있다.

이런 방식으로 1차 개발을 완료한 후 남아 있거나 새로 추가된 요구사항, 수정된 요구사항들을 모아 다시 같은 과정을 반복한다. 그리고 이 과정에서 소프트웨어 결과물은 항상 동작 가능한 상태를 유지한다.

Agile은 구현에서 테스트로 넘어가는 기간을 단축시켜 디버깅이 용이하게 해준다. 짧고 반복적인 개발을 통해서 전체 프로세스의 종료 시간을 예측하는데 도움을 준다. 새로운 요구사항이 나올 경우 다음번 주기에 바로 반영시킬 수 있으므로 고객 피드백이 빨라진다.

Posted by 이세영2
,